TOPICS:

- WHAT WILL MY MILEAGE GAIN BE?
- SAFETY PRECAUTIONS
- LET’S GET FAMILIAR WITH YOUR NEW DRY CELL
- INSTALLATION
- DRY CELL PERFORMANCE NOTES
- PREVENTING DRY CELL FROM FREEZING
- VIEW OUR YOUTUBE HHO DRY CELL DEMO VIDEO
- INSTALLING THE DRY CELL AWAY FROM EXCESSIVE HEAT
- THE DRY CELL OPERATES ON 12 VOLTS
- CONNECTING THE POWER SOURCE
- HOW TO RUN YOUR HHO GAS INTO YOUR VEHICLE.
- HOW TO USE YOUR VACUUM
- HHO DIRECTIONAL NOZZLE
- FINAL SETUP
- ELECTROLYTE
- TEST RUN
- YOU WANT FUEL MILEAGE GAIN? YOU MUST LEAN THE SYSTEM
- THE SOLUTION NOW AVAILABLE HHO COMPUTER CHIP
- IF YOU DECIDE NOT TO USE THE HHO CHIP
- THE BEST ALTERNATIVE METHODS
- LEAST ALTERNATIVE METHODS
- ENGINEERS AND SCIENTIST HAVE PROVEN SUPPLEMENTAL HYDROGEN WORKS GOING BACK TO THE 1800’S
- CLEANING THE DRY CELL-MY WATER IS BROWN
- INSTRUCTIONS ON HOW TO FLUSH
- EXTRA TIP FOR YOUR DIRTY LINES
WHAT WILL MY MILEAGE GAIN BE?

We have that question frequently asked. The fact is the answer to that question cannot properly be answered without stipulation. We might add, if one does so— we will be polite here— he may be ignorant to the real extenuating facts. First of all, supplemental hydrogen induced into any engine will not produce effective results UNLESS the engine is in VERY GOOD running condition. This means if your engine has ANY of the following problems: piston rings and/or valve(s), engine miss, check engine light on, oil burning consumption, unusual smoke emitting from exhaust and/or breather system, or overheating, or has not been tuned according to factory recommendations, DO NOT expect any fuel mileage improvement. And don’t install anyone’s HHO system until it is rectified by a professional that does mechanical work for a living and has ASE (Automotive Service Excellence) certification credentials (see company profile: http://www.labellashho.com/index.htm#profile). Simply stated, HHO is not a fix-all; but it is a proven fact that supplemental hydrogen reduces engine emissions and increases fuel economy on average by 30%. Scientific documented proof of this fact can be read here: http://www.labellashho.com/bettermileage_howto.htm. However, supplemental hydrogen must be installed properly and the engine and its computer, where applicable, must be properly tuned for each application to accommodate the HHO induction. Placing any kind of supplemental hydrogen generator system onto any engine, without addressing the aforesaid, will yield little or no fuel mileage improvement. And if anyone leads you to believe otherwise, you will inevitably be rudely awakened. Make no mistake about it, we are not saying you cannot do successful business with other companies that may be different in their operations. We are only saying be vigilant. Make sure before you make a purchase that there's real support if you have questions and need help. We have a support form link on our website located on the navigation menu top left of any page under “contact us support” http://www.labellashho.com/contact_us.htm that is monitored regularly to narrow down and pinpoint installation issues. Please do not call us on our phone number for support as questions that require answers to for diagnosing are too extensive to do over the phone. Nonetheless, we can say with reasonable confidence that those who have followed the aforesaid have gotten satisfactory results from supplemental hydrogen installation and development— no matter where they’ve made the purchase. The information herein is provided to ALL viewers of our website with the idea of improving both fuel mileage and environmental conditions. Best wishes from LaBella’s HHO and Company.

SAFETY PRECAUTIONS:

Incorrectly installing or incorrectly using our Hydrogen Dry Cell (or hydrogen generator)
may result in serious damage to your automobile or bodily injury. Read and follow the instructions and safety precautions given here and in relevant places throughout this manual to avoid these hazards. If you do not understand these instructions or do not like working on vehicles, have your mechanic do the installation. Be sure to work outside, no smoking; make sure the engine is not hot.

Be sure to wear goggles and rubber gloves and only use professional tools; use common sense and general safety procedures used for automotive installations and maintenance. If you're not sure, ASK! Yes, HHO is combustible – AFTER IT ENTERS THE ENGINE – that's the whole point. Your Hydro Fuel Dry Cell system does not store hydrogen when installed properly, so there is no fire hazard due to hydrogen storage. So, don't let people who have no understanding of the system intimidate you or tell you about non-existent hazards. Hydrogen dry cell technology cools down the engine and adds safety to any car.

The article “Shade Tree Safety” By Mike Bumbeck of autoMedia.com is a recommended reading that will give more education for the do it yourself mechanic.

WORD OF CAUTION: Avoid unnecessary fears and that includes listening to self-appointed “experts”. Because the safety notes in this manual are not intended to intimidate or stop you, only to add to your safety.

LET'S GET FAMILIAR WITH YOUR NEW DRY FUEL CELL:
Twin Dry Fuel Cells In Parallel

Wiring For Twin
4 dry cells running in separate pairs to one tank

INSTALLATION:

The dry cell is the heart of the system that generates the HHO gas and cools down the engine. You will need to find a place in the engine compartment to mount your new dry cell. It **MUST BE MOUNTED UPRIGHT WITH THE CHANNEL IRON MOUNTS LEVEL TO THE GROUND & The fitting openings facing NORTH to the sky**, and NOT side mounted or it will not work properly and you will have unstable amp draw that could blow the fuse. It should be mounted and secured in such a manner as to assure that it cannot bounce around when the vehicle hits bumps etc. Your dry cell comes with mounting holes which make your cell easy to install. Be sure to install your new dry cell so that it can easily be accessed and can be conveniently cleaned and serviced or inspected from time to time. Your new dry cell comes with a Reservoir/Bubbler that looks similar to the one above.
Make sure that your Reservoir/Bubbler is installed the same as you see in the illustration. As you can see, the Reservoir/Bubbler needs to be higher than your dry cell. The distance below the bubbler tank should be as follows: single dry cell 12-14 inches below. Multi dry cells 14-16 inches below. It is important to make sure you have a nice straight drop from your reservoir down to your dry cell with no snaking of the hoses. If that’s not possible an assistant small water pump will be needed to optimize circulation and to minimize water browning. For configurations where the distance from the tank to the cell are greater than the suggested drop (over 12-16 inches) I recommend using a larger pump. See full details from our associate HHO provider: https://hydroclubusa.wordpress.com/hhopumps/. Furthermore, heat the hose in warm water before use to aid in flexibility and make sure ALL hose connections to the fittings are securely tightened with hose clamps (with the exception of the hoses connecting at the one way check valve) and seal all fitting threads with the use of any brand Goop glue or similar product following the product’s instructions. This system works off of gravity when the recommend hose drop distance is met, it will not work properly if it's not installed right. If using twin (double) dry cells, connect them only in parallel as seen in illustration above, including the wiring; “in series” method should not be used as it will not work. It is particularly noteworthy that if you are unable to keep the amp draw in specifications as outlined in the electrolyte mix instructions, two other items will prove to be invaluable: a “vaporizer” (sometimes known as a scrubber) and the “anti foam agent.” These items are not included in the kit, as it is not necessarily mandatory unless the aforementioned is applicable to you. But be aware that it can be a risky challenge to keep the amp draw in specification with the electrolyte mix alone and without the use of a pulse width modulator controller (PWM). As noted in the electrolyte mix instructions, too high of amp draw is the main cause of electrolyte water vapor and foaming in the bubbler tank. In any event, if you decide to utilize a vaporizer, it must be installed upright as depicted in the illustration and preferably above the bubbler tank. If the latter isn't possible, the vaporizer may need to be drained periodically by disconnecting the lower hose or dismounting it and positioning it upright and above the bubbler tank so that it can drain back into the bubbler tank. In the event electrolyte water vapor happens to enter the engine intake, it can trigger the check engine light and could cause issues with the throttle body components. In such a case, an engine diagnostic scan will have to be performed to pinpoint the issue. Engine code scans can be performed for free at many auto parts stores. The vaporizer, anti foam agent and pulse width modulator can be purchased on our website via the navigation menu located top left of any page at labellashho.com and clicking the link: "Hydrogen Dry Cell Kits" and scroll down to locate these items and read all the description of them.

DRY CELL PERFORMANCE NOTES:

Multiple dry cells can be used to increase HHO output capacity (LPM) if fuel mileage gain is unsatisfactory. Keep in mind, however, for fuel mileage gain, follow the proper electrolyte mix for your size engine for the correct amp draw. Too much amp draw causes steam and over heating of the dry cell and produce less HHO gas. Also leaning of the engine is necessary in most cases with the proper electronic devices which are outlined herein. When proper leaning of the engine is accomplished but mileage is not increased, you can try another dry cell in parallel and test the vehicle's fuel mileage,
carefully using the proper electrolyte mix ratio to produce the correct amp draw for your engine size. It is possible to use pairs of dry fuel cells with the same PWM and bubbler tank accommodating them with added fitting at the bubbler tank as illustrated above. Pairs of separate dry cells will run cooler than one large dry cell in most cases. If you try running the extra pair of dry fuel cells using the same fittings, the electrolyte mix and gas won’t flow as well and the use of a small electric water pump will be needed as aforementioned. Nonetheless, the dry cell will only perform best after the engine has reached full running temperature with the factory recommended engine thermostat (engines that run too cool or do not reach factory recommended running temperature will not experience the best fuel mileage gain). Experience has shown that short runs will yield less fuel mileage gains whereby the longer the run the better the fuel mileage gain because the dry cell must warm up to run at its full performance capacity. Average warm up time is 10 minutes. Thus if you drive short runs of that duration with a full cooling down of the engine in between the runs, you will not see much fuel mileage gain.

PREVENT DRY CELL FROM FREEZING:

In regard to freezing temperatures, the electrolyte mix information addresses how to keep the dry cell from freezing, which can damage the sealing gaskets, causing it to leak.

VIEW OUR YOUTUBE HHO DRY CELL DEMO VIDEO:
http://www.youtube.com/watch?v=X6p_udDj0zA

INSTALLING THE DRY CELL AWAY FROM EXCESSIVE HEAT:

Try to install your new dry cell as far away from the heat of your engine. Locate the coolest available place in the engine area. We cannot give you an exact number here for what is “too hot”, because there is a combination of heating factors here. There is a situation called Thermal Runaway, where an increase in ambient temperature combined with too high of electrolyte mix can lead to a destructive result to the dry cell. You can prevent this from happening by following instructions below and utilizing what’s called a pulse width modulator (PWM) to keep a stable amp draw to the dry cell. The electrolyte mix information addresses this more in detail.

THE DRY CELL OPERATES ON 12 VOLTS:

Your new dry cell device is operated by vacuum pressure from your vehicle’s engine, plus a 12 Volt supply from your vehicle’s electrical system. The device is designed to operate on 12 Volts. Refer to the wiring diagrams. If you’re not sure, consult with your auto mechanic, or contact us through the contact us/support form http://www.labellashho.com/contact_us.htm

CONNECTING THE POWER SOURCE:
Please refer to the wiring illustration below for typical wiring configuration for powering the dry cell. We recommend the diagrams that utilize a relay, an amp meter and switch as depicted in the following titled diagrams: “Typical Wiring Diagram Without PWM” and “Typical PWM wiring Diagram With Amp Meter.” Some PWM’s may or may not use a cooling fan. **PWM NOTE:** If you are employing a pulse width modulator with your installation, **DO NOT REMOVE THE KNOB** or the unit will be damaged and will not operate. To open the case, use a small screw driver, remove any packing. The back of the case may be cut to accommodate any wiring.
TYPICAL WIRING DIAGRAM WITHOUT PWM

Relay Connections ID:

#87: Positive side of battery
#86: Grd.
#85: Ignition run/on/off or elect. fuel pump hot wire
#30: To PWM 12+
 or if not using PWM, to + side HHO generator
1. Identify a point in your vehicle’s electrical system which has 12 Volts (positive) present ONLY WHEN THE ENGINE IS IN THE RUNNING ignition position for connecting to the dry cell positive electrical connection terminal. Be sure to install an amp meter where you can easily view the amp draw of the dry cell at all times, possibly...
inside the vehicle. If you use a pulse width modulator (PWM), this can aid in a stable amp draw to the dry cell because you can set the amp draw at a specific setting.

2. Connect the black terminal of dry cell to a good ground source near the dry cell. If using a pulse width modulator (PWM), see illustration “Typical PWM Wiring Diagram With Amp Meter.”

HOW TO RUN YOUR HHO GAS INTO YOUR VEHICLE:

Now it's time to connect the HHO gas output line to your vehicle. (Follow the diagram below and read the following paragraph earmarked with “Important Note”).
Inline with continuous vacuum source at engine - break off to accommodate the correct full size hose.

3/8 hose pushed up to the 3/8 shoulder.

Don't cut this end. Leave it 1/8 opening. If you get a check engine light on, eliminate this modification.
HOW TO USE YOUR VACUUM:

Dry cell systems should be connected to the closest area to the throttle throat (throttle body) and for more efficiency also connected directly to continuous intake manifold vacuum as well, as illustrated (if you decide not to use the HHO dual connection gas output method to the engine, eliminate the T fitting near the bubbler tank/vaporizer and the break away T fitting at the continuous vacuum source and connect to the air intake throttle throat as illustrated). The main objective is to suck the HHO gas into a place such as the carburetor throat or fuel injection throttle body and into the intake manifold at idle, where it can be automatically mix with the existing fuel/air mixture supplemented.

Important Note: on the vacuum T fitting for the PCV modification, if you get a check engine light on, eliminate this modification all together as in some cases it causes a lean burn issue. However, before proceeding to make connections to the intake, install the one-way check valves at the HHO gas output hoses going to engine as illustrated above with the one-way valve flow toward engine. Do not install any clamps on the one-way valve so in the event a flash back occurs the hose will blow off preventing entry into the bubbler tank. Now for connecting the HHO gas output hoses to the engine. The best connection spot on carburetors and injection systems is at the closest location to the throttle body throat. Connect the output hose on the air filter container right above the carburetor throat and on fuel injection system, right above the throttle body throat by means of a fitting. On rubber duct type hoses, you can use a soldier gun and melt a hole in the rubber duct closest to the throttle body and glue and screw the fitting into the hole with Goop glue. The other HHO output hose should go to continuous vacuum at the intake manifold such as a PCV valve or other continuous vacuum source closest to the manifold with the use of a universal/break off vacuum T fitting, available at all auto parts stores. Do NOT use the vacuum source for the brake booster. Please reference the illustration details above very carefully, taking note of the break off points of the universal T fitting for the HHO gas hose and the vacuum source. The HHO gas hose at the universal T fitting is broken off at the ¼ section for restriction purposes and the 3/8 hose is pushed all the way up to the 3/8 section (it’s especially advisable not to cut the T fitting to the 3/8 section at the HHO gas hose connection when connecting to the PCV valve vacuum system as this may cause too large of a vacuum leak in the engine. The purpose of the dual supply (dual HHO output) is that when the engine is idling, there is a high vacuum pressure in the intake manifold. This pressure drops when you accelerate or rev up the engine to higher RPM. At that moment, more vacuum is available in the air intake for sucking up the HHO gas into the engine. On metal or hard plastic ducts, remove and drill hole, thread it, install fitting, and then clean the metal shavings out of the duct before installing it. **On diesel or gas engines with turbo charger(s), the HHO output hose goes into the intake system BEFORE the turbo charger.** On twin turbo chargers you will have to use a 3/8 T fitting at the end of the HHO output hose to run 2 additional hoses, one each, to each intake system BEFORE each turbo charger. 2, 3/8 elbow fittings will be needed to tap into the intake system to connect the output hoses to.
WARNING: If you put the HHO output hose into the intake AFTER the turbo charger(s), the HHO system will become pressurized, damaging the HHO system. Diesel engines may require more than 2 dry cells and they can be connected in the same manner as the 2 cells but with the use of 4 or 5 way 3/8 vacuum connectors in place of the T connectors in the 2 dry cell diagram. The use of a small water pump will be needed as earlier outlined.

HHO GAS DIRECTIONAL NOZZLE:

Another trick in optimizing the HHO gas induction is to direct the HHO gas out line as close as possible into the throttle throat by fabricating a directional nozzle so that it directs the HHO gas right over the primary throat(s) be it a carbureted or fuel injected engine. This also works on ALL non-turbo diesel and non-propane burning engines. It is very important to direct the HHO gas into the throttle throat without the directional nozzle obstructing any of the moving parts like the choke flap or throttle plate. This can be fabricated with the use of 3/8 x ¼ NPT elbow fittings, a 3/8 vacuum T fitting and 3/8 OD clear tubing, copper tubing, or plastic tubing assembled with Goop glue as depicted in the illustration. Sanding of the mating areas may be needed to get the fittings to tightly fit into one another before gluing.

FINAL SETUP:

Filling the Reservoir/Bubbler with DISTILLED WATER & THE ELECTROLYTE (KOH):
ELECTROLYTE:

Our website is available to anyone on the Internet. There is some information that is only for those who paid for the product. For example, we have our own formula for the electrolyte we use in our dry cells. This formula runs cleaner and more efficient than most things on the market today. To access the electrolyte mix pdf go to our navigation menu at labellashho.com and on the top left of any page locate the link “Electrolyte Mix.” You will need the password. The preliminary instructions that came inside your kit explains how to access the electrolyte information with password. Please read all of the preliminary instructions as well. It is critical to follow all of the electrolyte mix instructions carefully.

If in some rare event you don’t have the preliminary instructions on how to access the electrolyte mix information, for the password contact us through the contact us/support form with proof of purchase: http://www.labellashho.com/contact_us.htm. Once you have your mixture ready, pour it into the top of the Reservoir/Bubbler to just cover the lower hole but not the upper one. This allows the dry cell to self bleed. Fill the bubbler up to the water level line. (see sample diagram below) This is just a sample of a 2 quart Reservoir/Bubbler. Keep the tank only 75% full. While you are filling the unit, you should be able to see water running down to your dry cell. If you don't see any water going down the tube, this could mean you don't have the Reservoir/Bubbler high enough above your dry cell or lines are kinked and bent. Always try to install your dry cell at the recommended distance below the tank as afore outlined. The dry cell system should be bled of all air before operating or unstable amp draw will occur and may cause main power fuse to blow. There should be no need to use any other method for bleeding the dry cell when properly mounted. If in the event there’s an issue bleeding the air out, you can use a vacuum pump gun (like a Mityvac http://www.mityvac.com/) and collector jar to perform the bleeding as indicated in image below at the outlet line to bubbler tank connection. Also, low controlled air pressure (below 5 psi) may be utilized if a vacuum gun it not available at the bubbler tank cap opening area with a wet rag around a regulated air nozzle while blocking off all openings but the one at the dry cell outlet line which would be placed in a container (jar or bucket) while utilizing eye, face, and breathing protection.
TEST RUN:

1. Start by checking all your connections. Make sure your amp meter and inline fuse have been installed.

2. Now start your vehicle. While it's running, watch for bubbling action inside of your Reservoir/Bubbler. You should be able to see the gas entering the Reservoir/Bubbler tank.

3. Now it's time to check how many amps your dry cell is pulling as outlined in the electrolyte mix information. This dry cell was made to run at 10-12 amps without overheating at all. It will produce over 1 liter of HHO gas per minute if you have everything hooked up according to the instructions; that's all the hydrogen your vehicle will need to see an improvement in fuel mileage when used in conjunction with the proper EFIE’s.

4. If you have done everything right, within a short time, you will notice that the engine starts to sound dramatically different. It will sound smoother and quieter. Your RPM's
may be unstable for a couple of minutes. This is normal. The HHO is starting to change
the combustion cycle and cancels the pinging and the engine is now adjusting to the
changes. Your RPM's will normalize in a couple of minutes.

For HHO fuel mileage gain you will need to lean out the engine for the HHO gas to take
effect. Depending on the vehicles you have installed the dry cell on, you will need to use
the proper EFIE’s to accomplish this, such as a computer chip, or O2 sensor devices.

YOU WANT FUEL MILEAGE GAIN?? YOU MUST LEAN THE SYSTEM:

Most modern-day fuel injected vehicles use a computer and oxygen sensing devices to
monitor and maintain the correct oxygen/fuel ratio. One of the key sensing devices is the
oxygen sensor or exhaust sensor, in some cases the AFR (air fuel ratio) sensor. Fuel
injected vehicles have one or more oxygen sensors installed in them. The computer
extrapolates what the air/fuel ratio is, based on the amount of oxygen in the exhaust, as
reported by the oxygen sensor.

When a fuel saving device is installed, such as an oxy hydrogen generator, the petroleum
based fuel is burned more completely. One of the results of this is that there is more
oxygen (and less unburned hydrocarbons) in the exhaust stream. This is a good thing, and
is in fact, what we are trying to achieve. However, the computer will perceive this
condition as a “too lean” air/fuel mix. In other words, what is now a desirable condition
in the exhaust will be interpreted as “not enough fuel”, and the computer will direct the
fuel injectors to increase the amount of fuel being pumped into the engine. The result is
that the oxygen sensor and computer prevents efficient combustion from occurring! In
other words, it cancels out most of the improvement we have just made.

The Solution

NOW AVAILABLE: HHO COMPUTER CHIP for OBDII: (systems from Jan. 1996)

The Volo Performance company has developed a computer chip that takes care of
properly leaning out all the engine computer sensors without having to individually
addressing them. If you choose not to use this chip, you will have to at least address the
O2 sensor(s) before, and where applicable, after the catalytic converter if you expect to
have fuel mileage gain. If you already have any other electronic fuel injection enhancers
(EFIEs) on the engine they will need to be removed when using the Volo chip, as they
will interfere with the Chip’s performance. You can be purchased the Volo chip on our
website via the navigation menu located top left of any page at labellashho.com and
clicking the link: "Hydrogen Dry Cell Kits" and scroll down to locate this item and read
all the description.

Here’s What the HHO Chip Does:
This chip is dynamic, which means it will consider oxygen levels in the exhaust, along with engine speed and load, intake air temperature and volume, and many other variables to determine the most efficient fuel delivery rate and timing at up to 256 separate load points. When using HHO as a fuel supplement, the chip will adjust fuel delivery and timing to optimize efficiency. It’s compatible with factory equipped Turbo/Superchargers, diesel engines, Flex-Fuel, & HHO supplement systems. It is NOT compatible with hybrid engine options, propane, or natural-gas. It is simple to install by plugging it into the vehicle’s computer DLC (Data Link Connector) AFTER you have programmed it on your PC following the step-by-step instructions that comes with the chip.

IF YOU DECIDE NOT TO USE THE HHO CHIP:

Of foremost importance is the leaning of the oxygen sensor(s) which “tells” the computer what the oxygen content is by providing a voltage on its signal wire between 0 and 1 volt. 450 millivolts (.45 volts) means that the fuel/air mixture is correct. Higher values means the mix is rich (has too much gas), and lower voltages means the mix is lean. By adding voltage to the sensor’s output, we can compensate for the additional oxygen in the exhaust and lean out the vehicle to get maximum MPG.

You must use device(s) that enhances the signal to the (ECU), such as an EFIE (electronic fuel injector enhancer) which goes on the oxygen sensor(s) BEFORE the catalytic converter(s) and in other cases, also down stream oxygen sensor(s).

THE BEST ALTERNATIVE METHODS:
For 95 & older fuel injected vehicles with two or less O2 sensors and one map sensor you will need the Oxygen Sensor and Map Enhancer EFIE Controller to lean the engine. It can be purchased on our website via the navigation menu located top left of any page at labellashho.com and clicking the link: "Hydrogen Dry Cell Kits" and scroll down to locate the item and read all the description of it.

For more options and details of oxygen sensor enhancers available for your specific vehicle needs, we recommend contacting FuelSaver-MPG with your year, make, model engine size and vehicle’s country of origin where applicable:
https://www.fuelsaver-mpg.com/
Phone: (541) 846-8007
Support: support@fuelsaver-mpg.com

For OBDII 1996 and newer vehicles, please refer back to the Volo chip information above under topic:
“NOW AVAILABLE: HHO COMPUTER CHIP for OBDII: (systems from Jan. 1996)”
LEAST ALTERNATIVE METHODS:
While it’s true map enhancers have been in use for supplemental hydrogen on vehicles, we have found that these devices do very little if anything for leaning the engine out for HHO use. The better alternative as mentioned earlier is either the Volo chip or addressing the O2 sensors. See details above under topic: **THE BEST ALTERNATIVE METHODS:**

In regard to the use of O2 sensor isolators, these also do very little if anything to lean the engine for HHO use. They are prone to triggering the check engine light.

ENGINEERS AND SCIENTIST HAVE PROVEN SUPPLEMENTAL HYDROGEN WORKS GOING BACK TO THE 1800’S:

Despite all criticism as to whether supplemental hydrogen works to improve mileage, performance and cleaner emissions, recognized engineers and scientist have proven that it does. See the documentation on our website labellashho.com in the navigation menu top left of any page under: “Proof Hydrogen Works.”

Other notable proof of hydrogen use in gasoline engines was a genius ahead of his time named Stanley Meyer. He was a threat to the big giant oil companies and died a mysterious death. The story is intriguing even to this day. Read it in Wikipedia titled: “Stanley Meyer’s Water Fuel Cell.” Related links and videos:

Videos:
https://youtu.be/GsMOFHPjZpo
https://youtu.be/staL1wr07Sg

For legal reasons we have to place a disclaimer on our website due to the nature of the items sold to the public. See this document on our website labellashho.com in the navigation menu top left of any page under: “Disclaimer.”

CLEANING THE DRY FUEL CELL- MY WATER IS BROWN:

Browns Gas: My water is getting Very dirty, NOW WHAT? . . .

With all HHO systems the water color will change over time, which is why we implement a 6 month periodic flush. Since the beginning of HHO, systems that produce” Browns Gas” share this common problem. The name “Browns Gas” seems quite fitting as you will see a slight browning of the water in these systems (as well as the inventors name being Yull Brown).

Although this is something seen across the board in the industry, we have always been interested in how clean our cells stay compared to others. So not to worry, this is
something you will notice but also something to monitor. Proper flow will help keep the KOH from burning up at an advanced rate, which is one of the causes of an advanced browning. If your system is healthy your water should remain transparent for up to 4-6 months depending on use. Even if there is slight change in tint, you should still be able see through your water.

The pump definitely helps in keeping good flow in any situation where the recommended configuration is not able to be met. If you notice your water becoming murky, very dark or browning at an advanced rate, you may begin to suspect that something foreign may have entered into the process which led to this discoloration. It also may be possible that your circulation is poor. I do not want you to get become stressed about this discoloration, although we do want to try and keep the system clean as possible because of its importance.

INSTRUCTIONS ON HOW TO FLUSH:

1. Empty system of current electrolyte (drain the system of the water which it is currently holding).

2. Replace with Distilled White Vinegar.

3. With Tank Cap OFF, Turn HHO system on for 5-10 minutes allowing the vinegar to flow through the system and cleanse from inside out.

4. Empty Again (repeat step 1).

5. Replace with new distilled water/KOH mixture.

If your drop is not of 12-14 inches for single dry cell and not 14-16 inches for multiple dry cells with close to straight down with little to no snaking of the lines, you may be experiencing poor circulation, which can speed up this browning process. See link below on adding a small pump to your system

https://hydroclubusa.wordpress.com/hhopumps/

EXTRA TIP FOR YOUR DIRTY LINES:

This should clear things up. If you suspect your lines may be dirty, you can run a 1 parts bleach/ 2 part water mixture through them to cleanse them of anything polluting your system before firing it back up with the new clean mixture.

labellashho.com
LaBella’s Enterprises